312 {{16, 0}, {18, 0}, {24, 0}},
313 {{33, 0}, {30, 0}, {32, 3}},
314 {{49, 1}, {48, 3}, {50, 3}}
318 {{8, 0}, {5, 5}, {10, 5}},
319 {{22, 0}, {16, 0}, {18, 0}},
320 {{41, 1}, {33, 0}, {30, 0}}
324 {{4, 0}, {0, 5}, {2, 5}},
325 {{15, 1}, {8, 0}, {5, 5}},
326 {{31, 1}, {22, 0}, {16, 0}}
331 {{2, 0}, {6, 0}, {14, 0}},
332 {{10, 0}, {11, 0}, {17, 3}},
333 {{24, 1}, {23, 3}, {25, 3}}
337 {{0, 0}, {1, 5}, {9, 5}},
338 {{5, 0}, {2, 0}, {6, 0}},
339 {{18, 1}, {10, 0}, {11, 0}}
343 {{4, 1}, {3, 5}, {7, 5}},
344 {{8, 1}, {0, 0}, {1, 5}},
345 {{16, 1}, {5, 0}, {2, 0}}
350 {{7, 0}, {21, 0}, {38, 0}},
351 {{9, 0}, {19, 0}, {34, 3}},
352 {{14, 1}, {20, 3}, {36, 3}}
356 {{3, 0}, {13, 5}, {29, 5}},
357 {{1, 0}, {7, 0}, {21, 0}},
358 {{6, 1}, {9, 0}, {19, 0}}
362 {{4, 2}, {12, 5}, {26, 5}},
363 {{0, 1}, {3, 0}, {13, 5}},
364 {{2, 1}, {1, 0}, {7, 0}}
369 {{26, 0}, {42, 0}, {58, 0}},
370 {{29, 0}, {43, 0}, {62, 3}},
371 {{38, 1}, {47, 3}, {64, 3}}
375 {{12, 0}, {28, 5}, {44, 5}},
376 {{13, 0}, {26, 0}, {42, 0}},
377 {{21, 1}, {29, 0}, {43, 0}}
381 {{4, 3}, {15, 5}, {31, 5}},
382 {{3, 1}, {12, 0}, {28, 5}},
383 {{7, 1}, {13, 0}, {26, 0}}
388 {{31, 0}, {41, 0}, {49, 0}},
389 {{44, 0}, {53, 0}, {61, 3}},
390 {{58, 1}, {65, 3}, {75, 3}}
394 {{15, 0}, {22, 5}, {33, 5}},
395 {{28, 0}, {31, 0}, {41, 0}},
396 {{42, 1}, {44, 0}, {53, 0}}
400 {{4, 4}, {8, 5}, {16, 5}},
401 {{12, 1}, {15, 0}, {22, 5}},
402 {{26, 1}, {28, 0}, {31, 0}}
407 {{50, 0}, {48, 0}, {49, 3}},
408 {{32, 0}, {30, 3}, {33, 3}},
409 {{24, 3}, {18, 3}, {16, 3}}
413 {{70, 0}, {67, 0}, {66, 3}},
414 {{52, 3}, {50, 0}, {48, 0}},
415 {{37, 3}, {32, 0}, {30, 3}}
419 {{83, 0}, {87, 3}, {85, 3}},
420 {{74, 3}, {70, 0}, {67, 0}},
421 {{57, 1}, {52, 3}, {50, 0}}
426 {{25, 0}, {23, 0}, {24, 3}},
427 {{17, 0}, {11, 3}, {10, 3}},
428 {{14, 3}, {6, 3}, {2, 3}}
432 {{45, 0}, {39, 0}, {37, 3}},
433 {{35, 3}, {25, 0}, {23, 0}},
434 {{27, 3}, {17, 0}, {11, 3}}
438 {{63, 0}, {59, 3}, {57, 3}},
439 {{56, 3}, {45, 0}, {39, 0}},
440 {{46, 3}, {35, 3}, {25, 0}}
445 {{36, 0}, {20, 0}, {14, 3}},
446 {{34, 0}, {19, 3}, {9, 3}},
447 {{38, 3}, {21, 3}, {7, 3}}
451 {{55, 0}, {40, 0}, {27, 3}},
452 {{54, 3}, {36, 0}, {20, 0}},
453 {{51, 3}, {34, 0}, {19, 3}}
457 {{72, 0}, {60, 3}, {46, 3}},
458 {{73, 3}, {55, 0}, {40, 0}},
459 {{71, 3}, {54, 3}, {36, 0}}
464 {{64, 0}, {47, 0}, {38, 3}},
465 {{62, 0}, {43, 3}, {29, 3}},
466 {{58, 3}, {42, 3}, {26, 3}}
470 {{84, 0}, {69, 0}, {51, 3}},
471 {{82, 3}, {64, 0}, {47, 0}},
472 {{76, 3}, {62, 0}, {43, 3}}
476 {{97, 0}, {89, 3}, {71, 3}},
477 {{98, 3}, {84, 0}, {69, 0}},
478 {{96, 3}, {82, 3}, {64, 0}}
483 {{75, 0}, {65, 0}, {58, 3}},
484 {{61, 0}, {53, 3}, {44, 3}},
485 {{49, 3}, {41, 3}, {31, 3}}
489 {{94, 0}, {86, 0}, {76, 3}},
490 {{81, 3}, {75, 0}, {65, 0}},
491 {{66, 3}, {61, 0}, {53, 3}}
495 {{107, 0}, {104, 3}, {96, 3}},
496 {{101, 3}, {94, 0}, {86, 0}},
497 {{85, 3}, {81, 3}, {75, 0}}
502 {{57, 0}, {59, 0}, {63, 3}},
503 {{74, 0}, {78, 3}, {79, 3}},
504 {{83, 3}, {92, 3}, {95, 3}}
508 {{37, 0}, {39, 3}, {45, 3}},
509 {{52, 0}, {57, 0}, {59, 0}},
510 {{70, 3}, {74, 0}, {78, 3}}
514 {{24, 0}, {23, 3}, {25, 3}},
515 {{32, 3}, {37, 0}, {39, 3}},
516 {{50, 3}, {52, 0}, {57, 0}}
521 {{46, 0}, {60, 0}, {72, 3}},
522 {{56, 0}, {68, 3}, {80, 3}},
523 {{63, 3}, {77, 3}, {90, 3}}
527 {{27, 0}, {40, 3}, {55, 3}},
528 {{35, 0}, {46, 0}, {60, 0}},
529 {{45, 3}, {56, 0}, {68, 3}}
533 {{14, 0}, {20, 3}, {36, 3}},
534 {{17, 3}, {27, 0}, {40, 3}},
535 {{25, 3}, {35, 0}, {46, 0}}
540 {{71, 0}, {89, 0}, {97, 3}},
541 {{73, 0}, {91, 3}, {103, 3}},
542 {{72, 3}, {88, 3}, {105, 3}}
546 {{51, 0}, {69, 3}, {84, 3}},
547 {{54, 0}, {71, 0}, {89, 0}},
548 {{55, 3}, {73, 0}, {91, 3}}
552 {{38, 0}, {47, 3}, {64, 3}},
553 {{34, 3}, {51, 0}, {69, 3}},
554 {{36, 3}, {54, 0}, {71, 0}}
559 {{96, 0}, {104, 0}, {107, 3}},
560 {{98, 0}, {110, 3}, {115, 3}},
561 {{97, 3}, {111, 3}, {119, 3}}
565 {{76, 0}, {86, 3}, {94, 3}},
566 {{82, 0}, {96, 0}, {104, 0}},
567 {{84, 3}, {98, 0}, {110, 3}}
571 {{58, 0}, {65, 3}, {75, 3}},
572 {{62, 3}, {76, 0}, {86, 3}},
573 {{64, 3}, {82, 0}, {96, 0}}
578 {{85, 0}, {87, 0}, {83, 3}},
579 {{101, 0}, {102, 3}, {100, 3}},
580 {{107, 3}, {112, 3}, {114, 3}}
584 {{66, 0}, {67, 3}, {70, 3}},
585 {{81, 0}, {85, 0}, {87, 0}},
586 {{94, 3}, {101, 0}, {102, 3}}
590 {{49, 0}, {48, 3}, {50, 3}},
591 {{61, 3}, {66, 0}, {67, 3}},
592 {{75, 3}, {81, 0}, {85, 0}}
597 {{95, 0}, {92, 0}, {83, 0}},
598 {{79, 0}, {78, 0}, {74, 3}},
599 {{63, 1}, {59, 3}, {57, 3}}
603 {{109, 0}, {108, 0}, {100, 5}},
604 {{93, 1}, {95, 0}, {92, 0}},
605 {{77, 1}, {79, 0}, {78, 0}}
609 {{117, 4}, {118, 5}, {114, 5}},
610 {{106, 1}, {109, 0}, {108, 0}},
611 {{90, 1}, {93, 1}, {95, 0}}
616 {{90, 0}, {77, 0}, {63, 0}},
617 {{80, 0}, {68, 0}, {56, 3}},
618 {{72, 1}, {60, 3}, {46, 3}}
622 {{106, 0}, {93, 0}, {79, 5}},
623 {{99, 1}, {90, 0}, {77, 0}},
624 {{88, 1}, {80, 0}, {68, 0}}
628 {{117, 3}, {109, 5}, {95, 5}},
629 {{113, 1}, {106, 0}, {93, 0}},
630 {{105, 1}, {99, 1}, {90, 0}}
635 {{105, 0}, {88, 0}, {72, 0}},
636 {{103, 0}, {91, 0}, {73, 3}},
637 {{97, 1}, {89, 3}, {71, 3}}
641 {{113, 0}, {99, 0}, {80, 5}},
642 {{116, 1}, {105, 0}, {88, 0}},
643 {{111, 1}, {103, 0}, {91, 0}}
647 {{117, 2}, {106, 5}, {90, 5}},
648 {{121, 1}, {113, 0}, {99, 0}},
649 {{119, 1}, {116, 1}, {105, 0}}
654 {{119, 0}, {111, 0}, {97, 0}},
655 {{115, 0}, {110, 0}, {98, 3}},
656 {{107, 1}, {104, 3}, {96, 3}}
660 {{121, 0}, {116, 0}, {103, 5}},
661 {{120, 1}, {119, 0}, {111, 0}},
662 {{112, 1}, {115, 0}, {110, 0}}
666 {{117, 1}, {113, 5}, {105, 5}},
667 {{118, 1}, {121, 0}, {116, 0}},
668 {{114, 1}, {120, 1}, {119, 0}}
673 {{114, 0}, {112, 0}, {107, 0}},
674 {{100, 0}, {102, 0}, {101, 3}},
675 {{83, 1}, {87, 3}, {85, 3}}
679 {{118, 0}, {120, 0}, {115, 5}},
680 {{108, 1}, {114, 0}, {112, 0}},
681 {{92, 1}, {100, 0}, {102, 0}}
685 {{117, 0}, {121, 5}, {119, 5}},
686 {{109, 1}, {118, 0}, {120, 0}},
687 {{95, 1}, {108, 1}, {114, 0}}
699 {{1, 0, 0, 1}, 0, {0, 0}},
700 {{1, 1, 0, 2}, 0, {0, 0}},
701 {{0, 0, 0, 1}, 0, {0, 0}},
702 {{1, 0, 0, 2}, 0, {0, 0}},
703 {{2, 0, 0, 0}, 1, {-1, -1}},
704 {{1, 1, 0, 1}, 0, {0, 0}},
705 {{0, 0, 1, 1}, 0, {0, 0}},
706 {{0, 0, 0, 2}, 0, {0, 0}},
707 {{1, 0, 0, 0}, 0, {0, 0}},
708 {{0, 1, 0, 2}, 0, {0, 0}},
709 {{0, 1, 0, 1}, 0, {0, 0}},
710 {{0, 1, 1, 1}, 0, {0, 0}},
711 {{1, 0, 0, 3}, 0, {0, 0}},
712 {{1, 1, 0, 3}, 0, {0, 0}},
713 {{2, 0, 0, 11}, 1, {2, 6}},
714 {{1, 0, 0, 4}, 0, {0, 0}},
715 {{0, 0, 0, 0}, 0, {0, 0}},
716 {{0, 1, 0, 6}, 0, {0, 0}},
717 {{0, 0, 1, 0}, 0, {0, 0}},
718 {{0, 1, 1, 2}, 0, {0, 0}},
719 {{0, 0, 1, 7}, 0, {0, 0}},
720 {{0, 0, 1, 2}, 0, {0, 0}},
721 {{1, 1, 0, 0}, 0, {0, 0}},
722 {{0, 0, 1, 6}, 0, {0, 0}},
723 {{2, 0, 0, 10}, 1, {1, 5}},
724 {{0, 0, 0, 6}, 0, {0, 0}},
725 {{0, 0, 0, 3}, 0, {0, 0}},
726 {{1, 0, 0, 11}, 0, {0, 0}},
727 {{1, 1, 0, 4}, 0, {0, 0}},
728 {{0, 1, 0, 3}, 0, {0, 0}},
729 {{0, 1, 1, 0}, 0, {0, 0}},
730 {{0, 0, 0, 4}, 0, {0, 0}},
731 {{0, 1, 0, 5}, 0, {0, 0}},
732 {{0, 1, 0, 0}, 0, {0, 0}},
733 {{0, 1, 0, 7}, 0, {0, 0}},
734 {{1, 1, 0, 11}, 0, {0, 0}},
735 {{0, 0, 0, 7}, 0, {0, 0}},
736 {{1, 0, 0, 10}, 0, {0, 0}},
737 {{2, 0, 0, 12}, 1, {3, 7}},
738 {{1, 0, 1, 6}, 0, {0, 0}},
739 {{1, 0, 1, 7}, 0, {0, 0}},
740 {{0, 0, 1, 4}, 0, {0, 0}},
741 {{0, 0, 1, 3}, 0, {0, 0}},
742 {{0, 1, 1, 3}, 0, {0, 0}},
743 {{0, 1, 0, 4}, 0, {0, 0}},
744 {{1, 0, 0, 6}, 0, {0, 0}},
745 {{0, 0, 0, 11}, 0, {0, 0}},
746 {{0, 0, 1, 8}, 0, {0, 0}},
747 {{0, 0, 1, 5}, 0, {0, 0}},
748 {{2, 0, 0, 14}, 1, {0, 9}},
749 {{0, 0, 0, 5}, 0, {0, 0}},
750 {{1, 0, 0, 12}, 0, {0, 0}},
751 {{1, 1, 0, 10}, 0, {0, 0}},
752 {{0, 1, 1, 4}, 0, {0, 0}},
753 {{1, 1, 0, 12}, 0, {0, 0}},
754 {{1, 0, 0, 7}, 0, {0, 0}},
755 {{0, 1, 0, 11}, 0, {0, 0}},
756 {{0, 0, 0, 10}, 0, {0, 0}},
757 {{2, 0, 0, 13}, 1, {4, 8}},
758 {{0, 0, 1, 10}, 0, {0, 0}},
759 {{0, 0, 1, 11}, 0, {0, 0}},
760 {{0, 1, 0, 9}, 0, {0, 0}},
761 {{0, 1, 0, 8}, 0, {0, 0}},
762 {{2, 0, 0, 6}, 1, {11, 15}},
763 {{0, 0, 0, 8}, 0, {0, 0}},
764 {{0, 0, 1, 9}, 0, {0, 0}},
765 {{1, 0, 0, 14}, 0, {0, 0}},
766 {{1, 0, 1, 5}, 0, {0, 0}},
767 {{0, 1, 1, 16}, 0, {0, 0}},
768 {{1, 0, 1, 8}, 0, {0, 0}},
769 {{1, 0, 0, 5}, 0, {0, 0}},
770 {{0, 0, 0, 12}, 0, {0, 0}},
771 {{2, 0, 0, 7}, 1, {12, 16}},
772 {{0, 1, 0, 12}, 0, {0, 0}},
773 {{0, 1, 0, 10}, 0, {0, 0}},
774 {{0, 0, 0, 9}, 0, {0, 0}},
775 {{1, 0, 0, 13}, 0, {0, 0}},
776 {{0, 0, 1, 16}, 0, {0, 0}},
777 {{0, 1, 1, 15}, 0, {0, 0}},
778 {{0, 1, 0, 15}, 0, {0, 0}},
779 {{0, 1, 0, 16}, 0, {0, 0}},
780 {{1, 1, 0, 14}, 0, {0, 0}},
781 {{1, 1, 0, 13}, 0, {0, 0}},
782 {{2, 0, 0, 5}, 1, {10, 19}},
783 {{1, 0, 0, 8}, 0, {0, 0}},
784 {{0, 0, 0, 14}, 0, {0, 0}},
785 {{1, 0, 1, 9}, 0, {0, 0}},
786 {{0, 0, 1, 14}, 0, {0, 0}},
787 {{0, 0, 1, 17}, 0, {0, 0}},
788 {{0, 0, 1, 12}, 0, {0, 0}},
789 {{0, 0, 0, 16}, 0, {0, 0}},
790 {{0, 1, 1, 17}, 0, {0, 0}},
791 {{0, 0, 1, 15}, 0, {0, 0}},
792 {{1, 0, 1, 16}, 0, {0, 0}},
793 {{1, 0, 0, 9}, 0, {0, 0}},
794 {{0, 0, 0, 15}, 0, {0, 0}},
795 {{0, 0, 0, 13}, 0, {0, 0}},
796 {{2, 0, 0, 8}, 1, {13, 17}},
797 {{0, 1, 0, 13}, 0, {0, 0}},
798 {{1, 0, 1, 17}, 0, {0, 0}},
799 {{0, 1, 0, 19}, 0, {0, 0}},
800 {{0, 1, 0, 14}, 0, {0, 0}},
801 {{0, 1, 1, 19}, 0, {0, 0}},
802 {{0, 1, 0, 17}, 0, {0, 0}},
803 {{0, 0, 1, 13}, 0, {0, 0}},
804 {{0, 0, 0, 17}, 0, {0, 0}},
805 {{1, 0, 0, 16}, 0, {0, 0}},
806 {{2, 0, 0, 9}, 1, {14, 18}},
807 {{1, 0, 1, 15}, 0, {0, 0}},
808 {{1, 0, 0, 15}, 0, {0, 0}},
809 {{0, 1, 1, 18}, 0, {0, 0}},
810 {{0, 0, 1, 18}, 0, {0, 0}},
811 {{0, 0, 1, 19}, 0, {0, 0}},
812 {{1, 0, 0, 17}, 0, {0, 0}},
813 {{0, 0, 0, 19}, 0, {0, 0}},
814 {{0, 1, 0, 18}, 0, {0, 0}},
815 {{1, 0, 1, 18}, 0, {0, 0}},
816 {{2, 0, 0, 19}, 1, {-1, -1}},
817 {{1, 0, 0, 19}, 0, {0, 0}},
818 {{0, 0, 0, 18}, 0, {0, 0}},
819 {{1, 0, 1, 19}, 0, {0, 0}},
820 {{1, 0, 0, 18}, 0, {0, 0}}
#define FaceIJK(variable_name)
information on a single base cell
DEVICE const BaseCellData baseCellData[NUM_BASE_CELLS]
Resolution 0 base cell data table.
int isPentagon
is this base cell a pentagon?
EXTENSION_INLINE int _isBaseCellPentagon(int baseCell)
Return whether or not the indicated base cell is a pentagon.
Base cell related lookup tables and access functions.
int baseCell
base cell number
EXTENSION_INLINE bool _baseCellIsCwOffset(int baseCell, int testFace)
Find the FaceIJK given a base cell.
EXTENSION_INLINE int _faceIjkToBaseCellCCWrot60(const FaceIJK(h))
Find base cell given FaceIJK.
base cell at a given ijk and required rotations into its system
EXTENSION_INLINE int _faceIjkToBaseCell(const FaceIJK(h))
Return whether the indicated base cell is a pentagon where all neighbors are oriented towards it...
static DEVICE const BaseCellRotation faceIjkBaseCells[NUM_ICOSA_FACES][3][3][3]
Neighboring base cell ID in each IJK direction.